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Abstract
We develop a generalized real-space effective medium super-cell approximation
(EMSCA) method to treat the electronic states of interacting disordered
systems. This method is general and allows randomness both in the on-
site energies and in the hopping integrals. For a non-interacting disordered
system, in the special case of randomness in the on-site energies, this method is
equivalent to the non-local coherent potential approximation (NLCPA) derived
previously. Also, for an interacting system the EMSCA method leads to the real-
space derivation of the generalized dynamical cluster approximation (DCA) for
a general lattice structure. We found that the original DCA and the NLCPA
are two simple cases of this technique, so the EMSCA is equivalent to the
generalized DCA where there is included interaction and randomness in the
on-site energies and in the hopping integrals. All of the equations of this
formalism are derived by using the effective medium theory in real space.

1. Introduction

Theoretical understanding of alloys and strongly correlated systems such as high temperature
superconductors, heavy fermions and magnetism requires appropriate techniques to obtain
their physical properties. Recently, using many body theory techniques, it has been shown
that both alloys and strongly correlated systems in the infinite dimensional limit are mapped
to a single site which is embedded in an effective medium [1–4]. This can be described
by a restriction on the locality of self-energy, i.e., �(i, j ; iωn) = �(iωn)δi j . These single
site techniques for strongly correlated systems and alloys systems are called the dynamical
mean field approximation (DMFA) [5] and coherent potential approximation (CPA) [6, 7]
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respectively. The single site nature of the infinite-dimensional limit implies that the inter-site
correlations and inter-site multiple scattering are negligible. But in the ordinary dimensions,
such as one, two and three, both inter-site correlation and inter-site multiple scattering have a
significant contribution on the self-energy. Therefore not only is the self-energy not local but
also it is very sensitive with respect to the dimension. In order to include such inter-site effects
extensions of CPA were developed using the locator formalism [8–10]. In the propagator
formalism the cluster CPA technique was developed by Nickel and Butler [11] where the
self-energy is not causal. The molecular coherent potential approximation (MCPA) [12] is
formulated in real space with open boundary conditions on a finite cluster which does not
preserve the real lattice translational invariance [13]. Also for interacting systems the cellular
dynamical mean field theory (CDMFT) [14] was developed in real space by dividing the real
lattice into clusters. However, recently the dynamical cluster approximation (DCA) has been
introduced for interacting systems [15]. A version of DCA has also been used to treat disordered
systems [16]. This method improved the CPA by allowing weak wavevector dependence of the
self-energy,�(k;ω). The DCA was originally derived on the basis of momentum conservation
in the coarse grained first Brillouin zone (FBZ). Momentum conservation is applied only to
the coarse grained wavevector Kn in the FBZ and in the corresponding Laue function. In this
method a key computational step makes use of a Fourier like transformation of coarse grained
wavevectors Kn to a real-space set of coordinates, Rn . These coordinates were interpreted as
the lattice sites of a real cluster of a real lattice. However, this connection was not established
directly and their Kn are correct for a hyper cubic lattice structure.

Using effective medium theory in real space we have developed a non-local CPA
(NLCPA) method [17]. In this method a cluster of impurities is embedded in an effective
medium, such that all averaged clusters are equivalent and lattice periodicity is preserved.
We also applied NLCPA as a real-space super-cell approximation to explain the resonance
peak that appears in the density of states of substituted Zn impurity in the CuO2 plane of
Bi2Sr2Ca2Cu3O8+δ [17]. A real-space super-cell approximation which is called the effective
medium super-cell approximation (EMSCA) has been developed by us. We have applied
this technique to a carbon nanotube alloy system. It has been found that the semiconducting
gap of a zigzag single walled carbon nanotube, Eg, could be controlled by doping boron
and nitrogen [18]. Here the EMSCA is extended to treat both disorder and interaction
simultaneously. This method preserves both causality and translational invariance; it could be
equivalent to the generalized DCA to include random hopping integrals. The EMSCA method
leads to derivation of the DMFT and CPA for the case of (Nc = 1) and it is exact when number
of lattice sites in the super-cell goes to infinity (Nc → ∞). We show that neglecting the
interaction between electrons in different super-cells, disorder multiple scattering by sites in
different super-cells and also deviations of the hopping integrals, δtσσi j , naturally leads to the
super-cell periodicity of the self-energy,�(i, j ; iωn), with respect to the super-cell translation
vectors, rNc . This provides us with the DCA [15] coarse graining of the self-energy in k-space
for a general lattice structure. Note that in contrast to the original derivation of the DCA
in k-space, our derivation is in real space. In the DCA it is not obvious why the Coulomb
interaction where employed should be same as the original lattice model [19]. Furthermore
we are not coarse graining the lattice band structure, in contrast to CDMFT [14].

This paper is organized in the following manner. In section 2 the model is introduced, then
the equation of motion and its corresponding Dyson equation is derived for the next stages. In
section 3 the EMSCA (generalized DCA) formalism is introduced. In section 4 the EMSCA is
applied to a disordered system and the NLCPA [17] formalism is derived. Finally, in section 5,
the EMSCA is applied to a disordered interacting system and a closed set of equations for
performing numerical calculations is obtained.



Effective medium super-cell approximation for interacting disordered systems 509

2. Model

We start our investigation by studying a general tight binding model for an interacting alloy
system, which is given by

H = −
∑

i jσσ ′
tσσ

′
i j c†

iσ c jσ ′δσσ ′ +
∑

iσ

(εi − µ)n̂iσ +
∑

i jσσ ′
Uσσ ′

i j n̂iσ n̂ jσ ′, (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator of an electron with spin σ on lattice site

i , n̂iσ = c†
iσ ciσ is the number operator and tσσ

′
i j are the random hopping integrals between i and

j lattice sites with spin σ and σ ′ respectively. µ is the chemical potential and εi is the random
on-site energy, where it takes the values −δ/2 with probability 1 − c for the host sites and
δ/2 with probability c for impurity sites. Uσσ ′

i j is a positive or negative interaction potential
between electrons on the lattice sites i and j .

The equation of motion for electrons corresponding to the above Hamiltonian, equation (1),
is given by
∑

lσ ′′

((
∂

∂τ
− εi + µ

)
δilδσσ ′′ − tσσ

′′
il δσσ ′′

)
Gσ ′′σ ′

(lτ, jτ ′)

+
∑

lσ ′′
Uσσ ′′

l j Gσ ′′σ ′
2 (lτ, lτ, lτ +, jτ ′) = δ(τ − τ ′)δi jδσσ ′ (2)

where τ and τ ′ are imaginary time, Gσσ ′
(iτ, jτ ′) is the random interacting single particle

Green function and Gσσ ′
2 (iτ, iτ, iτ +, jτ ′) is the two particle Green function. The random

hopping integrals, tσσi j , can be defined in terms of clean system hopping, t0σσ
i j , and the hopping

integral deviations, δtσσi j , in a such way that the hopping randomness is included just in the
δtσσi j , where

tσσi j = t0σσ
i j + δtσσi j (3)

where just the second term on the right-hand side of equation (3) is random. The Dyson equation
corresponding to equation (2) for the averaged Green function, Ḡσσ ′

(lτ ′′, jτ ′), is [20]
∑

lσ ′′

((
∂

∂τ
− εi + µ

)
δilδσσ ′′ − t0σσ ′′

il δσσ ′′

)
Ḡσ ′′σ ′

(lτ, jτ ′)

+
∑

lσ ′′

∫
dτ ′′�σσ ′′

(iτ, lτ ′′)Ḡσ ′′σ ′
(lτ ′′, jτ ′) = δ(τ − τ ′)δi jδσσ ′ (4)

where the self-energy,�σσ ′
(iτ, lτ ′), is defined by

∑

lσ ′′

〈
(εiδilδσσ ′′ + δtσσ

′′
il δσσ ′′)Gσ ′′σ ′

(lτ, jτ ′) +
∑

lσ ′′
Uσσ ′′

l j Gσ ′′σ ′
2 (lτ, lτ, lτ +, jτ ′)

〉

=
∑

lσ ′′

∫
dτ ′′�σσ ′′

(iτ, lτ ′′)Ḡσ ′′σ ′
(lτ ′′, jτ ′). (5)

The imaginary time Fourier transform of equation (4) leads to
∑

lσ ′′

(
(iωn + µ)δilδσσ ′′ − t0σσ ′′

il δσσ ′′ − �σσ ′′
(i, l; iωn)

)
Ḡσ ′′σ ′

(l, j ; iωn) = δi jδσσ ′, (6)

where ωn = 1
β
(2n + 1)π are the Matsubura frequencies. The space Fourier transform of the

equation (6) is given by
∑

σ ′′
((iωn + µ)δσσ ′′ − εσσ

′′
k δσσ ′′ −�σσ ′′

(k; iωn))Ḡ
σ ′′σ ′

(k; iωn) = δσσ ′, (7)
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where the self-energy�σσ ′′
(k; iωn) is defined by

�σσ ′′
(k; iωn) = 1

N

∑

i, j

�σσ ′′
(i, j ; iωn)e

ik·ri j (8)

and also the clean system band structure, εσσ
′′

k is given by

εσσk = 1

N

∑

i, j

t0σσ
i j eik·ri j . (9)

In the Fourier transformations of these equations the following orthogonality condition,

1

N

∑

k

e−ik·ri j = δi j (10)

is used, where the indices i and j run over all N lattice sites in the crystal.
The matrix form of equation (7) in the spinor space can be written as

Ḡ(k; iωn) = ((iωn + µ)I − εk − Σ(k; iωn))
−1 , (11)

where the band structure matrix, εk, is

εk =
(
ε

↑↑
k 0
0 ε

↓↓
k

)
, (12)

the self-energy matrix Σ(k; iωn) is given by

Σ(k; iωn) =
(
�↑↑(k; iωn) �↑↓(k; iωn)

�↓↑(k; iωn) �↓↓(k; iωn)

)
, (13)

and the average Green function matrix, G(k; iωn), is defined by

G(k; iωn) =
(

G↑↑(k; iωn) G↑↓(k; iωn)

G↓↑(k; iωn) G↓↓(k; iωn)

)
; (14)

also, I is a 2 × 2 unit matrix. Hence the clean non-interacting Green function is given by

G0(k; iωn) = ((iωn + µ)I − εk)
−1 . (15)

So, the real-space correspondence of equation (7) can be written as

Ḡ(i, j ; iωn) = G0(i, j ; iωn) +
∑

ll′
G0(i, l; iωn)Σ(l, l ′; iωn)Ḡ(l ′, j ; iωn), (16)

where the real-space clean non-interacting Green function, G0(i, j ;ωn), is

G0(i, j ; iωn) = 1

N

∑

k

e−ik·ri j G0(k; iωn), (17)

and the average single particle Green function is defined by

Ḡ(i, j ; iωn) = 1

N

∑

k

e−ik·ri j Ḡ(k; iωn). (18)

Equations (5) and (16) cannot be solved exactly. The single site approximations such
as DMFT and CPA for the interacting and disordered systems are used to solve these
equations [5, 6]. It is well known that in these approximations the inter-site effects have
been neglected. Here our task is going beyond such single site approximations to preserve
inter-site effects. In the next section we introduce our method (EMSCA) and we show that,
for the case of δtσσ

′′
ll′ = 0 and Uσσ ′′

ll′ = 0, it is equivalent to the NLCPA [17], and also that for
the case of a clean interacting system it leads to a real-space derivation of the DCA [15] for a
general lattice structure.
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3. Effective medium super-cell approximation (EMSCA) or generalized DCA

Consider a random interacting system which is divided into similar volume super-cells where
each super-cell includes Nc sites and has original lattice symmetry. The super-cell average
Green function, corresponding to equation (16), is

Ḡsc(I, J ; iωn) = G0(I, J ; iωn) +
∑

ll′
G0(I, l; iωn)Σ(l, l ′; iωn)Ḡsc(l

′, J ; iωn), (19)

where I and J refer to sites in the same super-cell and indices l, l ′ refer to the whole lattice
sites. Now we apply an approximation (EMSCA) which is based on three assumptions: first,
neglecting interaction between electrons on different super-cells, i.e.,

Uσσ ′
i j = 0, if i and j /∈ same super-cell, (20)

second, neglecting hopping integral deviations, δtσσi j , when i and j are in the different super-
cells, i.e.,

δtσσi j = 0, if i and j /∈ same super-cell (21)

and finally, neglecting disorder multiple scattering and also correlations between different
super-cells. Since in the averaged system the self-energy is due to interactions and disorder
scattering, which includes impurity multiple scattering and interaction correlations, then by our
assumption that there is no correlation and multiple scattering between different super-cells,
we have

Σsc(i, j ; iωn) = 0, if i and j /∈ same super-cell. (22)

Since in the averaged system we have all possible impurity configurations and interaction
contributions with their own weights (probabilities) for each super-cell, so all super-cell
self-energies should be the same. This means that the self-energies in each super-cell are
independent of other super-cells and they are periodic with respect to the super-cell translation
vectors, rNc ,

Σsc(rI J + rNc ; iωn) = Σsc(rI J ; iωn), (23)

where I and J refer to sites in the same super-cell and the super-cell translation vector rNc is
given by

rNc =
3∑

i=1

mi Nci ai , (24)

where Nc = Nc1 Nc2 Nc3 is the number of lattice sites in a three-dimensional super-cell, ai are
primitive vectors of real lattice, Nci is the number of sites in the super-cell in the i th direction
and mi are integers. Figure 1 shows rNc for a two-dimensional lattice with periodicity over
nine sites in each super-cell. Note that when Nc → ∞ all super-cells will be coincident and are
equal to the full real lattice. Equation (20) leads to the super-cell periodicity for the interaction
potential matrix, Usc(I, J ), where

Usc(I, J ) =
(

U↑↑
sc (I, J ) U↑↓

sc (I, J )

U↓↑
sc (I, J ) U↓↓

sc (I, J )

)
, (25)

which is

Usc(rI J + rNc ) = Usc(rI J ). (26)

The Fourier transformation of equations (23) and (26) implies that

e−ik·rNc = 1. (27)
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Figure 1. A two-dimensional lattice is divided into similar super-cells of nine sites where each
super-cell has the original lattice symmetry. The arrow indicates the super-cell periodicity vector
rNc = 3a1 + 3a2, where Nc1 = 3 and Nc2 = 3.

Thus the wavevectors of the self-energy, Σ(k; iωn), and the interaction potential, U(k), are
restricted to the super-cell wavevectors Kn which are given by

Kn =
3∑

i=1

ni

Nci
bi, (28)

where bi are the reciprocal-lattice primitive vectors and ni is an integer number. Note that in
the limit of Nci → Ni (where the super-cell is extended to the whole lattice) the super-cell
wavevectors, Kn, convert to the following allowed Bloch wavevectors [21],

k =
3∑

i=1

ni

Ni
bi. (29)

Since the set of {Kn} vectors divides the volume of the first Brillouin zone into Nc equal patches,
following the DCA method, we identify the nth patch by its corresponding wavevector Kn that
is located at its centre. Therefore we define the relation between Kn and k inside each patch
as follows:

k = Kn + k′
n (30)

where k′
n are the wavevectors inside the nth patch with respect to the centre of the patch.

Figure 2 illustrates the FBZ of a two-dimensional square lattice and the patches where they
correspond to the nine sites of the EMSCA. For one of the patches, the relationships between
k, k′ and the super-cell wavevectors Kn are shown schematically.

Therefore, by inserting equations (28) and (22) into (8) we found that

Σsc(Kn; iωn) = 1

Nc

∑

I,J

eiKn ·rI J Σsc(I, J ; iωn). (31)

Also, by applying the EMSCA conditions, equations (20) and (27), to the following exact
relation,

U(k) = 1

N

∑

i, j

U(i, j)eik·ri j , (32)



Effective medium super-cell approximation for interacting disordered systems 513

k

1

k’1

K

−π /a π /a

π /a

−π /a

0

Figure 2. Relation between k, Kn and k′
n in the first Brillouin zone (FBZ) for a two-dimensional

system with a nine-site super-cell. As given by equations (28) and (30) there are nine different Kn

in the FBZ, and so the FBZ is divided into nine equal areas, while each Kn is located at the centre
of one of these areas. Each sub-zone should have the FBZ symmetry.

we found a similar coarse graining for the interaction potential,

U(Kn) = 1

Nc

∑

I,J

Usc(I, J )eiKn ·rI J . (33)

The inverse Fourier transformation of the self-energy, Σ(Kn; iωn), to the real super-cell is

Σsc(I, J ; iωn) = 1

Nc

∑

Kn

e−iKn ·rI J Σ(Kn; iωn), (34)

and similarly for U(Kn) it is

Usc(I, J ) = 1

Nc

∑

Kn

U(Kn)e
−iKn ·rI J , (35)

where the orthogonality condition in a super-cell is given by

1

Nc

∑

Kn

e−iKn ·rI J = δI J . (36)

By comparing equations (36) and (10) we find that the super-cell approximation is equivalent
to the replacement

eik′
n ·rI J ≈ 1. (37)

Now by inserting equations (37), (31) and (27) into (18), the super-cell average Green function,
Ḡsc(I, J ; iωn), is given by,

Ḡsc(I, J ; iωn) = 1

Nc

∑

Kn

eiKn ·rI J Ḡ(Kn; iωn), (38)

where

Ḡ(Kn; iωn) = Nc

N

∑

k′
n

(
G0(Kn + k′

n; iωn)
−1 −�(Kn; iω)

)−1
. (39)

By applying the DCA condition [15, 16, 22], Nc = L D , in k-space where the coarse grained
wavevectors are chosen as Kα = 2π

L , a relation similar to equation (27) is introduced [15, 22].
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Since the super-cell should have the original lattice symmetry and the DCA condition gives
us a super-cell with equal sides, so the DCA condition, Nc = L D , is not applicable for other
lattice structures and cannot give us a recipe for providing Kn, while in our method each
super-cell has the complete symmetry of the real lattice and hence its corresponding sub-zone
(coarse grained zone) in the FBZ has the FBZ symmetry. Therefore according to our EMSCA
formalism one can easily find Kn for a general lattice structure [18].

In order to obtain Ḡsc(I, J ; iωn) from equation (38), we should have Σsc(I, J ; iωn), for
which it is needed to have other equations to complete the self-consistency loop. These
equations are obtained by applying the EMSCA to the system partition function as follows.
The partition function of the system with the Hamiltonian equation (1) is given by

Z = 〈Tr e−β Ĥ 〉r , (40)

where 〈 〉r denotes the configurational average over random energies εi and δtσσi j . The partition
function, equation (40), can be rewritten as [23]

Z =
〈∫

D�̄D�e−S

〉

r

, (41)

where the action S is

S =
∑

i jσσ ′

∫ β

0
dτ ψ̄iσ δσσ ′

(
δi j

(
∂

∂τ
− µ

)
+ t0σσ ′

i j

)
ψ jσ (τ ) + Sr−i, (42)

and Sr−i is

Sr−i =
∑

i jσσ ′

∫
dτ ψ̄iσψiσUσσ ′

i j ψ̄ jσ ′(τ )ψ jσ ′(τ ) +
∑

i jσ

∫
dτ ψ̄iσ (τ )εiδi jψ jσ (τ ) (43)

+
∑

i jσσ ′

∫
dτ ψ̄iσ (τ )δσσ ′δtσσ

′
i j ψ jσ ′(τ ), (44)

in which D� = �i dψiσ dψiσ and D�̄ = �i dψ̄iσ dψ̄iσ , where dψ̄iσ =
limM→∞�M

m=1 dψ̄iσ (τm), dψiσ = limM→∞�M
m=1 dψiσ (τm). Equation (42) can be rewritten

as

S =
∫ β

0
dτ dτ ′ ∑

i jσσ ′
ψ̄iσ (τ )(G0−1

)i jσσ ′ψ jσ ′(τ ′) + Sr−i, (45)

where

δσσ ′

(
δi j

(
∂

∂τ
− µ

)
+ t0σσ ′

i j

)
ψ jσ ′(τ )

=
∫ β

0
dτ ′ 1

β

∑

ωn

δσσ ′
(
δi j(iωn − µ) + t0σσ ′

i j

)
eiωn(τ−τ ′)ψ jσ (τ

′)

=
∫ β

0
dτ ′ (G0−1

)i jσσ ′(τ − τ ′)ψ jσ ′(τ ′), (46)

and the clean non-interacting Green function matrix, G0(iωn), is defined by

(G0−1
)i jσσ ′(τ − τ ′) = δσσ ′

β

∑

ωn

(
δi j(iωn − µ) + t0σσ ′

i j

)
eiωn(τ−τ ′). (47)

By use of equation (16) the clean Green function, G0, can be expressed in terms of the average
Green function, Ḡ, and self-energy, Σ, as

G0−1 = Ḡ−1 + Σ. (48)
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By inserting equation (48) into (45), we have

S =
∫

dτ dτ ′ ∑

i jσσ ′
ψ̄iσ (τ )

(
Ḡ−1)

i jσσ ′ ψ jσ ′(τ ′) + Sr−i−s, (49)

where

Sr−i−s =
∑

i jσσ ′

∫
dτ ψ̄iσψiσUσσ ′

i j ψ̄ jσ ′(τ )ψ jσ ′(τ )

+
∑

i jσσ ′

∫
dτ dτ ′ ψ̄iσ (τ )δσσ ′(εiδi j + δtσσ

′
i j )ψ jσ ′(τ )

−
∑

i jσσ ′

∫
dτ ′ dτ ψ̄iσ (τ )Σσσ ′

i j (τ − τ ′)ψ jσ (τ
′). (50)

Now we apply the EMSCA, in which we take an average over all super-cells except
one super-cell which is denoted by {I J }. In equation (50) this is equivalent to replacing
Uσσ ′

i j + δσσ ′(εiδi j + δtσσ
′

i j ) by Σσσ ′
i j (τ − τ ′)when i and j /∈ {I J }. Hence equation (41) converts

to

ZEMSCA = Zsc

∫
�i /∈{I },σ

(
dψ̄iσ dψiσ

)
e− ∫

dτ dτ ′ ∑
σσ ′

∑
i j /∈{I,J } ψ̄iσ (τ )(Ḡ−1)i jσσ ′ψ jσ ′ (τ ′)

, (51)

where the super-cell partition function, Zsc, is given by

Zsc =
〈∫

�
Nc,σ
I=1

(
dψ̄Iσ dψIσ

)
e−Ssc

r−i〉r−sc (52)

and the super-cell action in the effective medium, Ssc
r−i , is

Ssc
r−i =

∑

I Jσσ ′

∫
dτ dτ ′ ψ̄Iσ (τ )

(G−1)
I Jσσ ′ (τ − τ ′)ψJσ ′(τ ′)

−
∑

I Jσσ ′

∫
dτ ψ̄IσψIσUσσ ′

scI J ψ̄Jσ ′(τ )ψJσ ′(τ )

+
∑

I Jσσ ′

∫
dτ ψ̄Iσ (τ )δσσ ′(εIδI J + δtσσ

′
I J )ψJσ ′(τ ), (53)

in which the super-cell cavity Green function matrix, G, is defined by

G−1 = Ḡ−1
sc − Σsc. (54)

The matrix element of equation (54) is given by the following Dyson-like equation for the
super-cell sites,

Ḡsc(I, J ; iωn) = G(I, J ; iωn) +
∑

L ,L ′
G(I, L; iωn)�sc(L, L ′; iωn)Ḡsc(L

′, J ; iωn). (55)

The second part of the right-hand side of equation (51) is the super-cell excluded effective
medium partition function which is easily integrable, due to bi-linearity of the Grassmann
variables, ψ̄Iσ (τ ) and ψIσ (τ ). But the partition function of the super-cell, Zsc, where it
is embedded in an effective medium environment, is not integrable directly due to four
point Grassmann variables in its integrand. Many approximations, such as the Hartree–Fock
approximation, quantum Monte Carlo approximation, could be used to decouple the four point
Grassmann variables to two point variables. To see the advantages of the static version of
the EMSCA method with respect to the CPA, first we investigate a disordered system without
interaction between electrons (Uσσ ′

scI J ). Note that in equation (54) both the super-cell cavity
Green function G and super-cell average Green function Ḡ are causal; hence the super-cell
self-energy Σ is casual.
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Figure 3. A four site impurity super-cell, Nc = 4, in an effective medium of mean-field super-cells.

4. Static EMSCA for a disordered system

For a disordered system where Uσσ ′
scI J = 0, equations (52) and (53) lead to

Gimp
sc

−1
(τ − τ ′) = G(iωn)

−1(τ − τ ′)− δ(τ − τ ′)εsc, (56)

where εsc is the super-cell impurity matrix, where its matrix elements are given by

εsc
I J = (εI δI J + δtσσ

′
I J )δσσ ′. (57)

The imaginary-time Fourier transform of equation (56) implies that

Gimp
sc (iωn)

−1 = G(iωn)
−1 − εsc, (58)

where the matrix element of equation (58) can be written as

G imp
sc (I, J, iωn) = G(I, J, iωn) +

∑

L L ′
G(I, L, iωn)ε

sc
L L ′ G imp

sc (L
′, J, iωn). (59)

The average of the impurity Green function G imp
sc (I, J ; iωn) over all impurity configurations{

εsc
I J

}
in the super-cell is given by

〈G imp
sc (I, J ; iωn)〉 = Ḡsc(I, J ; iωn). (60)

For a disordered system, equations (38), (55), (59) and (60) construct a closed set of equations
that should be solved self-consistently.

Figure 3 shows an example of a four site super-cell impurity, Nc = 4, that is embedded in
an effective medium where the average has been taken over all super-cells except the impurity
super-cell. The above system of equations can be implemented numerically by the following
algorithm.

(1) Make a guess for �(Kn; E), usually zero.
(2) Calculate Ḡ(Kn; E) from equation (39).
(3) Use equation (55) to calculate the Fourier transform of the cavity Green function

G(Kn; E) = (Ḡ−1(Kn; E) +�sc(Kn; E))−1. (61)

(4) Calculate the impurity super-cell Green function G imp
sc (I, J ; E) from equation (58).
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Figure 4. The density of states of a two-dimensional square lattice of a binary alloy Ac B1−c at
half band filling, n̄ = 1, for c = 0.5 and δ = 6t0 when Nc = 1 (CPA) and Nc = 9. We compared
the Nc = 1 density of states with two cases of Nc = 9, first δtAA = 0, δtAB = 0 and second
δtAA = 4t0, δtAB = t0. For both non-hopping integral randomness cases band splitting occurred
(a metal–insulator phase transition took place), while for the other it did not (it still is a metal).

(5) Calculate the average Green function from equation (60) and Fourier transform it to the
super-cell wavevector Kn space by using equation (36).

(6) Using equation (61) calculate the new self-energies �sc(Kn; E), go back to step 1 and
repeat the whole process until convergence has been obtained to a desired accuracy.

As an application of this method we calculate the density of states of a two-dimensional
square lattice at half band filling, n̄ = 1 and δ = 6t0 (where t0

〈i j〉 = t0 are the clean system
nearest neighbours hopping integrals) in which Nc = 1 (CPA) and Nc = 9. We assume that the
hopping integrals for both spin up and down are the same, tσσi j = ti j . For the case of Nc = 9,
we also show the effects of introducing random hopping parameters, by considering the two
cases δtAA = 0, δtAB = 0 and δtAA = 4t0, δtAB = t0, where

δt〈i j〉 = tAA − t0, (62)

in which i and j are nearest neighbour sites and both are A type, and we also define

δt〈i j〉 = tAB − t0, (63)

where at the nearest neighbour sites i and j , atoms of type A and B are located respectively.
Figure 4 shows that for the Nc = 1 (CPA) and the case of Nc = 9 without random hopping,
in which δ = 6t0, we are at the band splitting regime [24, 25]. In this case at half band filling
a metal–insulator phase transition is taking place, in spite of the different gap sizes. However,
for the case of Nc = 9 with random hopping δtAA = 4t0, δtAB = t0, band splitting does not
take place, and thus the system is a metal. Therefore due to including randomness in both the
on-site energies and the hopping integrals, the EMSCA technique can provide more realistic
results.

5. EMSCA for a disordered interacting system

In the general case, to calculate the super-cell partition function, Zsc, where both interaction and
randomness are included it is possible to use the Hirsch–Hubbard–Stratonovichtransformation
(HHST) [26] to decouple the interaction term and map the interaction term to an auxiliary
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Ising field. Although our method is general with respect to the interaction potential and
randomness, for simplicity we concentrate our discussion on a repulsive on-site potential,
Uσσ ′

i j = Uδi jδσ,−σ . The HHST procedure is as follows. Divide the imaginary time interval,

[0, β], into M subintervals, �τ = β

M ; hence the imaginary time at the lth slice is given by

τl = l βM . Therefore the discretizing of imaginary times leads to
∫ β

0 dτ = ∑
l �τ , see for

example [27], thus,

Zsc =
〈∫

�σ�
Nc
I=1

(
dψ̄Iσ dψIσ

∑

{sI=±1}

)
e−Ssc

r−i

〉

r−sc

, (64)

where the super-cell action Ssc
r−i is

Ssc
r−i = (�τ)2

∑

I J ll′σ
ψ̄Iσ (τl)

×
(
(G−1)I J ll′ +

(
δtσσI J + δI J

(
λσ sIl

(�τ)2
− εI

�τ
+

U

2�τ

))
δll′+1

)
ψJσ (τl′ ). (65)

We define the cluster impurity Green function Gimp
sc as

(Gimp
sc

−1
)I J ll′ = (G−1)I J ll′ +

(
δtσσI J + δI J

(
λσ sIl

(�τ)2
− εI

�τ
+

U

2�τ

))
δll′+1. (66)

By the DCA + QMC method [28] for just interacting systems an equation similar to
equation (66) is found. The average of the impurity Green function, Gimp

sc , over Ising fields and
also impurity configurations is the super-cell effective average Green function Ḡsc(I, J ; τl, τl′ ),
where is given by

〈Gimp
sc (I, J ; τl, τl′ )〉 = Ḡsc(I, J ; τl, τl′). (67)

The Fourier transform of equation (67) is

Ḡsc(Kn; iωn) = 1

Nc

∑

ll′

∑

I J

eiKn ·rI J eiωn(τl −τl′ )Ḡsc(I, J ; τl, τl′ ). (68)

Equations (39), (55), (66)–(68) construct a closed set of equations that should be solved
self-consistently.

The algorithm for the numerical process is as follows.

(1) Make a guess for the initial cluster self-energy, Σ(Kn; iω), usually zero.
(2) From equation (39) calculate the cluster Green function, G(Kn; iω).
(3) Calculate the cavity Green function G(Kn; iω) from the Fourier transform of equation (55),

G−1(Kn; iωn) = G−1(Kn; iωn) + Σ(Kn; iωn).
(4) Calculate the Fourier transform of the cavity Green function,

G(I, J ; τl − τl′ ) = 1

βNc

∑

n

∑

Kn

G(Kn; iωn)eiωn(τl −τl′ )e−iKn ·rI J . (69)

(5) Calculate the new cluster Green function Ḡ(I, J ; τl − τl′ ) from equations (66)–(68).
(6) Calculate the inverse Fourier transform of Ḡ(I, J ; τl − τl′ ).
(7) Calculate the new self-energy Σ(Kn; iωn) from

Σ(Kn; iωn) = G−1(Kn; iωn)− G−1(Kn; iωn). (70)

(8) Go to step 2 and repeat the whole process until it converges.

As an application, the EMSCA method is applied to a two-dimensional interacting binary
alloy. Figure 5 shows the average density of states for the two different cases U = 0 and 2t0

where n̄ = 1, c = 0.5, δ = 2t0, δtAA = 2t0 and δtAB = t0. In the interaction case band
splitting is taking place while for the non-interacting case it is not.
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Figure 5. The nine-sites (Nc = 9) average density of states of a two-dimensional square lattice of
an interacting binary alloy Ac B1−c at half band filling, n̄ = 1, for c = 0.5, δ = 2t0, δtAA = 2t0

and δtAB = t0 when U = 0 and U = 2t0. Our results show that Coulomb interaction could lead
to band splitting at high interaction potential strength.

6. Conclusions

We have introduced a real-space effective medium super-cell approximation (EMSCA) for
random interacting systems which is equivalent to the generalized DCA including interactions
and randomness in both hopping integrals and on-site energies simultaneously for a general
lattice structure. This method is causal and preserves translational symmetry. For the case of
Nc = 1, the EMSCA recovers both single site approximations, DMFT and CPA formalisms.
However, for larger values of Nc the method simultaneously extends the CPA and DMFT
by including the effects of impurity multiple scattering, allowing randomness in the hopping
integrals and by inter-site correlations due to inter-site interactions. Furthermore, in the limit of
Nc → ∞ the method is exact. The EMSCA in the special case where hopping randomness is
neglected, δtσσI J = 0 and Uσσ ′

I J = 0, leads to an alternative derivation of the NLCPA [17]
technique for disordered systems. This derivation completely establishes the NLCPA as
a valid and useful extension of the old and popular CPA method, which incorporates the
effects of inter-site correlations. We showed that the periodicity of the super-cell self-energies
�sc(I, J ; E) with respect to the super-cell translation vector rNc leads to the coarse graining
of the self-energies in k-space and hence the average Green function. Then by applying the
effective medium theory on the system partition function, we find two equations which relate
the super-cell impurity Green function,Gimp

sc (I, J ; iωn), and super-cell average Green function,
Ḡsc(I, J ; iωn), to the super-cell cavity Green function, G(I, J ; iωn). This completes the whole
formalism of a real-space method for disordered interacting systems as a generalization of the
DCA to incorporate randomness in both hopping integrals and on-site energies simultaneously
for a general lattice structure. In the especial case of an interacting system our formalism leads
to a real-space derivation of the original DCA [15] for a general lattice structure.
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